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1 Deriving The Ideal Gas Law With Nonconstant Volume

1.1 Recap

Last time, we had a model of n interacting particles in a region Rn ⊆ R3. We will keep
the volume per particle constant:

|Rn|
n
→ v.

Then the phase space is Mn = Rn × R3 for positions and momenta, and the measure is
λn = 1

n!m3×m3, where the 1
n! shows that we are treating the particles as indistinguishable.

The total energy of our particles is

Φn(r1, . . . , rn, p1, . . . , pn) =
n∑
i=1

ϕpot(ri) +
∑
i,j

ϕint(ri − rj) +
n∑
i=1

1

2
|pi|2,

so we have potential energy, interaction energy, and kinetic energy terms. The partition
function is

Zn(β) =

∫
e−βΦn dλn = Z̃n(β)︸ ︷︷ ︸

pot. + int. energy part

·
(

2π

β

)3n/2

︸ ︷︷ ︸
kinetic energy part

,

where

Z̃n(β) =
1

n!

∫
· · ·
∫
Rn

n

e−β
∑n

i=1 ϕpot(ri)−β
∑

i,j ϕint(ri−rj) dm×n3 .

1.2 Derivation of the ideal gas law with nonconstant volume

Now discretize1 space: pick ε > 0 and let Bn = Rn∩εZ3. We will analyze the resulting ap-
proximation to Z̃n(β) and then let ε ↓ 0 to derive an equation of state. The approximation

1Discretization is not actually necessary, but without it, our arguments will take too long for the purposes
of this course.
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to Z̃n(β) is to

replace

∫
· · ·
∫
Rn

n

with
1

n!

∑
r1,...,rn∈Bn

r1,...,rn distinct

.

or equivalently with the sum ∑
ω⊆Bn,|ω|=n

.

We will actually use the indexing∑
ω∈{0,1}Bn ,
|ω|=n

, where |ω| =
∑
i∈Bn

ωi.

So we need to analyze

Ẑn(β) =
∑

ω∈{0,1}Bn

|ω|=n

e−β
∑

i∈Bn
ϕpot(i)·ω(i)e−β

∑
i,j∈Bn

ϕint(i−j)ωiωj .

Now let’s rederive the ideal gas law again: ϕpot = ϕint = 0, leaving

Ẑn(β) = |{ω ∈ {0, 1}Bn : |ω| = n}| =
(
|Bn|
n

)
=

(
|Bn|
n
|Bn| |Bn|

)
where n/|Bn| → ε3/v.

= exp

(
|Bn| ·H

(
ε3

v
, 1− ε3

v

)
+ o(|Bn|)

)
As n→∞, this looks like

= exp

(
n
v

ε3
H

(
ε3

v
, 1− ε3

v

)
+ o(n)

)
.

So 1
n log Ẑn(β)→ v

ε3
H( ε

3

v , 1−
ε3

v ) as n→∞. So in this model.

P =
∂

∂v
[−T log Ẑn(β)]

= nT
∂

∂v

[
v

ε3
H

(
ε3

v
, 1− ε3

v

)]
+ o(n)

Now we calculate

∂

∂v

[
v

ε3

(
−ε

3

v
log

ε3

v
−
(

1− ε3

v

)
log

(
1− ε3

v

))]
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=
∂

∂v

[
log

v

ε3
−
( v
ε3
− 1
)

log

(
1− ε3

v

)]
=

1

v
− ∂

∂v

[( v
ε3
− 1
)

log

(
1− ε3

v

)]
,

where the right term becomes negligible as ε→ 0 (there may be some calculation errors).
So

P =
nT

v
+ oε↓0(n),

and we get the ideal gas equation of state, PV = nT , after letting ε → 0. The value of
this method is that we can vary the volume as we increase the number of particles. If we
increased the number of particles without increasing the volume, the pairwise interactions
of the particles may blow up. Note that most quantities here admit direct control or
observation in the laboratory.

Here is how we may plot experimental data following the ideal gas law. The lines are
isotherms, curves where T is held constant.

1.3 The van der Waals equation of state

In 1872, van der Waals wrote the more accurate following equation of state(
P +

a

v2

)
︸ ︷︷ ︸

effective
pressure

· (v − b)︸ ︷︷ ︸
effective

compressible
volume

= nT,

where a, b are constants. This equation tells you what the effective addition to pressure
a/v2 is when the volume changes, accounting for the approximation errors in our model.
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This equation of state predicts real world behavior in a larger range of contexts than the
ideal gas law. Here is a picture of what this equation of state predicts:

However, this predicts that at low temperatures, gasses can “catastrophically collapse.”
Maxwell later adjusted the model by assuming that we adjust the curve so the total area
under the curve is the total work. This is known as “Maxwell’s equal area correction.” We
will discuss this story next time.
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